SACRAMENTO, CA January 10, 1997 Mr. Rick Woodard Water Quality Program Manager CALFED Bay-Delta Program 1418 9th Street, Suite 1155 Sacramento, California 95814 CALFED WATER QUALITY ACCEPTABLE RANGES FOR PARAMETERS OF CONCERN RELATIVE TO CHLORPYRIFOS Thank you for the opportunity to review the CALFED Water Quality Acceptable Ranges (WQAR) for Parameters of Concern draft document of November 19, 1996. As the stated goal of the CALFED Water Quality Team is to create a water quality program that is acceptable to all stakeholders, it is critical that a process be developed that meets the long term needs of the State. Such a mechanism should be flexible and allow for improvements in both the data base employed to assess water quality concerns as well as new science regarding exposure and availability. Acceptance of interim water quality standards, even those characterized as "targets", without a flexible mechanism to further assess and update such values creates final water quality criterion by default. The CALFED Water Quality Team appears to have chosen the interim freshwater Water Quality Criteria developed by the California Department of Fish and Game (DFG) as proposed in "Hazard Assessment of the Insecticide Chlorpyrifos to Aquatic Organisms in the Sacramento - San Joaquin River System" (1994, Administrative Report 94-1) to define the proposed acceptable range for chlorpyrifos. The DFG report evaluated one hundred and twenty tests based on methodology developed by USEPA in "Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses" by Stephan et al., USEPA, 1985. Although these guidelines provide a method for the determination of both acute and chronic criterion, DFG developed an interim chronic value only; this value was described as interim because of insufficient data. While the short half-life of chlorpyrifos (>90% degradation within 48 hours) and sporadic pattern of detection in the Sacramento and San Joaquin Rivers may support an acute criterion, the establishment of a chronic value, in the absence of exposure information, is not supportable. I would like to point out that the above mentioned USEPA methodology has been further defined since the DFG 1994 report. These refinements are developed in the "Final Water Quality Standards for the Great Lakes System" (Federal Registrar, 23 Mar 1995), this mechanism is now commonly referred to as GLI Tier I methodology. The California Department of Pesticide Regulation has proposed to develop Quantitative Response Limits (QRL's), derived from the Acute Criterion, that are analogous to the GLI Tier I CMC (Criterion Maximum Concentrations). DowElanco ecotoxicologists have been following the development of water quality criteria quite closely as it relates to chlorpyrifos, both in California and the Nation. We do note some differences between the USEPA Tier I methodology and the DFG methodology, as USEPA methodology currently describes a hierarchy for data selection [Sections E (pages 158 to 160) and I (pages 161 to 163)]. We find that the data base for chlorpyrifos is sufficiently developed that default criteria (such as, saltwater species, static systems) are unnecessary to complete an acute data grid. In our analysis (attached), and per the USEPA Tier 1 hierarchy for data selection, we have selected toxicological endpoints developed in flow-thorough systems with measured concentrations over those derived in static systems with nominal concentrations. Data selection for calculation of Final Acute Value. Our calculations (attached) result in a significantly higher Final Acute Value (FAV) for chlorpyrifos (0.129 μg L⁻¹) than that developed by DFG (0.07 μg L⁻¹). DFG indicates that 109 aquatic ecotoxicity studies were considered and approximately 70 were found to be acceptable. We found only 29 of >200 acute toxicity studies in the data base of Barron and Woodburn (Rev. Environ. Contam. Toxicol. 1995. Vol 144. pp. 1—93) to be acceptable based on strict interpretation of the USEPA Tier I methodology (see attachment). As mentioned above, the data base on chlorpyrifos is very deep, therefore, it is possible to assemble required data for FAV computation using the most stringent criteria outlined in the methodology (section IV of Appendix A to Part 132 of the Final Rule). For example, we used only tests conducted with freshwater species using flow-through systems; static systems with nominal (as opposed to measured) chlorpyrifos concentrations were not selected. DFG associates the four lowest Genus Mean Acute Values (GMAV) with acute values for the four most sensitive species identified in their data base (Table 4). This is not consistent with USEPA Tier I methodology. In our computations we selected the four lowest GMAV computed from the 29 sets of species-level data evaluated. If calculations result in fewer than 59 GMAV, then the four lowest GMAV are used; otherwise, the four GMAV closest to P=0.05 are selected (section IV.N of Appendix A to Part 132 of the Final Rule). DFG does not indicate the probability of occurrence of the four selected GMAV. These probabilities are necessary to calculate the FAV. In the case of our analysis, the probability of occurrence associated with the four lowest GMAV ranged from 0.0625 to 0.25. Final Acute Equation. The USEPA Tier I methodology makes provision for normalization of the FAV if there is a demonstrated relationship of toxicological response and water quality characteristics. DowElanco believes this an appropriate consideration for chlorpyrifos, since organic carbon (and perhaps other water quality characteristics) may well attenuate the observed toxicological response. We are currently reviewing the published literature and supporting independent external inquiry to determine if this is the case and whether the final acute equation should therefore account for covariance in a significant water characteristic. In light of this, CALFED should recognize that any WQAR for chlorpyrifos developed at this point in time is provisional and may need adjustment as the data base is clarified. Criterion Maximum Concentration. The USEPA Tier I methodology divides the FAV by two to develop the CMC. This approach has also been taken by DFG in the proposed WQAR. This divisor is a generic factor used in the USEPA algorithm to represent the slope of the dose-response curve for a non-specific pesticide and is not relevant to the activity of chlorpyrifos. Organophosphate insecticides, such as chlorpyrifos, have an extremely steep dose-response curve. The activity of this material is usually reduced from 100% to zero within a single 1/2X reduction in dose. The use of a generic factor of conservatism requiring a 1/2X reduction from a fifty percent effect value greatly overestimates the impact of this rapidly degrading material in the aquatic ecosystem. Without a rationale for this generic adjustment factor, it may be viewed as arbitrary and should not applied in development of the WQAR. Final Chronic Value. DFG evaluated 11 chronic toxicity tests and accepted seven; as discussed in their report, there was insufficient data to directly calculate a chronic criterion, nor were there enough data to derive a final acute-to-chronic ratio for freshwater species. To calculate a final chronic value for freshwater species, DFG varied from USEPA guidelines by using the saltwater acute-to-chronic ratio for Mysidopsis bahia. Mysidopsis is an ocean-dwelling species which is not generally used to derive freshwater water quality criteria. DFG's Recommendation for Criteria. Because of limited data, the DFG process did not conform to USEPA guidelines. However, DFG did recommended an interim water quality criterion in their 1994 hazard assessment for chlorpyrifos. Rather than express the criterion in terms of both acute and chronic criteria, DFG appears to have selected the lowest of the final acute value, final chronic value and final plant value as a single water quality criterion for freshwater. In this case the lowest of these values was the final chronic, 0.02 µg L⁻¹. DFG did qualify this assessment by noting that this criteria should be considered interim, as it was not derived from an acute-to-chronic ratio representative of freshwater species. An acute criterion was not proposed for chlorpyrifos, though such values exist for similar crop protection products. Chlorpyrifos is subject to rapid dissipation in the aquatic environment. The half-life for dissipation of this crop protection product is 16 hours in surface water, ninety percent of this molecule degrades within 46 hours. True toxicity in ambient water is a function of concentration, toxicity and the likelihood of exposure. In the case of chlorpyrifos, the short half-life and sporadic pattern of detection in the Sacramento and San Joaquin Rivers may support an acute criterion; however, the establishment of interim chronic values, in the absence of freshwater data or exposure information, is not supportable. In conclusion, DowElanco ecotoxicologists, using a comprehensive data base and stringent interpretation of USEPA Tier I guidance, have developed a chlorpyrifos FAV of 0.129 µg L-1. We do believe that the development of water quality standards using the probabilistic approach outlined by the Aquatic Risk and Mitigation Dialogue Group is more consistent with current science and may be considered as an alternative goal for the CALFED Water Quality Team. Such an approach develops a more realistic risk assessment by looking at probable exposure in addition to potential effect. In addition, the development of a more proactive plan, such as that proposed by the Western Crop Protection Association for a University of California system-wide Best Management Practice research, education, and outreach program may be a more productive use of CALFED resources. If, however, CALFED chooses to use a USEPA Tier I standard, we suggest that the 0.129 µg L-1 value be adopted as the interim WOAR for chlorpyrifos. Sincerely John J. Jachetta, Ph.D. State Regulatory Affairs Manager ## Attachment 1: Chlorpyrifos Water Quality Guideline Setting by USEPA Tier I Methodology Acute Criterion cc: John Sanders, Ph.D. Branch chief, Environmental Monitoring and Pest Management Branch Brian Finlayson, Ph.D., Environmental Services Supervisor, Department of Fish and Game, Pesticide Investigation Unit Bryan Stuart, Ph.D., DowElanco Sacramento Nick Poletika, Ph.D., DowElanco, 306/A2 California State Action File